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Probability modelling

DENNIS A. LASKOWSKI, PATTI M. TILLOTSON, DON D. FONTAINE
anp ERIC J. MARTIN

DowElanco, Midland, Michigan 48641-1706, U.S.A.

SUMMARY

This paper traces the development of modelling to assess the environmental fate of agricultural chemicals
within DowElanco’s Environmental Fate Group. Field monitoring of fate was the initial tool for
assessment, but inefficiency of the process and poor data interpretability turned the group’s attention to
benchmarking. This, too, proved to be an inadequate and frustrating process as it evaluated fate only
relative to other chemicals and did not allow in an absolute sense the assessment of risk of contamination
away from treated locations. It also did not allow the evaluation of management programmes for
minimization of environmental impact.

Clurrently, probability modelling is being evaluated to assess the environmental fate of chemicals and
the likelihood of attaining a given concentration at a specified site. It allows the handling of variability
and provides estimates of likelihood for environmental events to take place in designated areas of the
United States. Through the use of Fourier Amplitude Sensitivity Test and Monte Carlo sampling
techniques, ranges of inputs are used to drive environmental models to provide frequency distribution
data for output. The process appears useful for assessing environmental impact of chemicals because it
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allows whole range evaluation with data that are readily available, and provides information appropriate

for best management practices.

1. INTRODUCTION

Environmental chemistry has changed considerably
over the past 20 years. This relatively new branch of
science began to form when it was realized that man
must account for the effects his activities have upon the
surrounding environment. One aspect of this realiza-
tion was the dawning that agricultural chemicals used
to help feed the world and provide higher quality food
had to be understood with regard to their interactions
with the surrounding environment. It became clear
that the fate of chemicals used in agriculture needed to
be known. This paper traces the history of how this
process has evolved at DowElanco.

2. USE OF FIELD MONITORING

The initial movement within environmental chem-
istry dealt with monitoring. Researchers learned of the
environmental fate of chemicals through the estab-
lishment of monitoring programmes that measured the
decline of chemical concentrations in samples of soil,
water, or foodstuffs treated with material and then
sampled over time. DowElanco did its fair share of
monitoring, but it was a frustrating process and soon
became obvious from this activity that monitoring
alone would not provide answers to the key question
emerging from the environmental movement. This was
the issue of other life forms being exposed to the same
chemicals used to control the presence of pests and
disease in agricultural operations. It became clear that
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simply to monitor the surroundings of an area treated
with chemical was not going to show satisfactorily the
likelihood of exposure to non-target organisms. There
had to be a better and more efficient way of
determining whether chemicals were likely to move
away from the site of their placement.

An example is provided to show the inadequacies
and frustrations encountered when monitoring data
are used to determine the movement of chemicals. In
1965 extensive field monitoring of the soil fate of one of
DowElanco’s weed control chemicals was done. The
chemical was picloram and the researchers were J. W.
Hamaker, C.R.Youngson and C. A.I Goring
(Hamaker et al. 1967). They monitored the soil fate of
picloram at 207 locations within the United States and
Canada. Picloram had been applied to the sites and
then soil from each site was sampled to determine the
chemical’s movement from the soil surface to lower
depths, and to evaluate how rapidly the material
would dissipate from the treated areas. The results with
regard to movement through the soil profile are
summarized in table 1.

The number of positive findings along with relative
distribution of picloram with depth of sampling are
shown in the table. When chemical was still present in
the soil profile, the pattern of distribution suggests
bleed from the treated surficial soil layers to those
below, but not often beyond 60 cm. The top layers
contained most of the material followed by decreasing
amounts in the lower depths.

Although patterns of picloram movement through
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Table 1. Pattern of distribution of picloram in soil profiles
collected after treatment of 207 field locations with picloram

(Hamaker et al. 1965)

picloram
depth
(cm) number of positive findings % distribution
0-30 100 (48 9,)* 73-85°
31-60 100 (489,) 15-27
>60 12 (6%,) Trace-20

* This is the percentage of the total number of sites (207) that
had positive findings.

" This column of values refers to the distribution of picloram
within the soil profile for those profiles having picloram
prescnt at time of sampling.

soil are apparent from the work, it is not possible from
the extensive monitoring to determine climatic and soil
situations that had caused greatest movement away
from site of application. It is difficult to extrapolate the
results to different sites separated geographically and
having different combinations of soil and climate.
Furthermore, it is not known what might happen the
following year at the same locations, but with different
patterns of weather. These things must be known if
there is to be a successful characterization of the
likelihood for contamination by agricultural chemicals
moving away from site of placement.

3. BENCHMARKING

The next technique that attention was turned to was
the process of benchmarking. This procedure centres
around the idea that environmental fate of unknown
chemicals can be determined by comparison of key
environmental properties to those of chemicals already
characterized environmentally. DowElanco developed
expressions that combined properties in such a way as
to compare relative tendencies for chemicals to leach
through soil, vapourize away from site of application,
and to persist within the treated area (Laskowski et al.
1982). The key properties were soil degradation rate as
represented by number of days to degrade 50 %, of the
initial material, water solubility, vapour pressure,
soil/water partition coefficient in the form of K, and
the octanol/water partition coefficient K.

Expressions (table 2) were developed that would
combine these properties in such a way as to allow
comparison of the relative tendencies for how chemicals
behaved environmentally. Table 3 shows how the
procedure might work. The table presents a ranking of
agricultural chemicals with regard to their relative
tendencies to leach through soil, based upon the
properties listed above. As shown in the table, it was
assumed that leaching away from point of application
to soil is directly related to water solubility and time to
degrade 509, ; and inversely related to a chemical’s
vapour pressure and soil adsorption constant. A listing
of chemicals is presented in the table, starting with the
one most susceptible to movement at the top of the list
and ending with the one least likely to move at the
bottom. In this manner it is possible to place unknown

Phil. Trans. R. Soc. Lond. B (1990)

Table 2. Expressions used to combine key environmental
properties together to compare environmental behaviour of
chemicals relative to each other

-(After Laskowski et al. 1982)

leaching potential S/L(V,) (Koe)]
leaching index [(5) (&/2)]/[(V,) (K,e)]
volatility potential V/LS) (K,.)]
volatility index (V) (t/2)]/[(S) (Ke)]
on-site exposure [(¢/2) (K,o) (8) (K,,) (F) (R)]/V,
off-site exposure [(¢/2) (V) (Ko) (V)1/

[(K,e) (5)]

Abbreviations used: S, water solubility; ¥, vapour pressure;
K, soil adsorption constant; t/2, soil half-life (in days);
K, octanol/water partition coefficient; F, frequency of
chemical application; R, amount of chemical applied; V,
volume of material manufactured.

Table 3. Relative ranking of potential for chemicals to leach
through soil

(After Laskowski et al. 1982)

chemical leaching index®
dicamba 1 x 10
picloram 9% 10°
monuron 1x10°
carbofuran 2x 108
9.4-D 1 % 10
atrazine 1x 108
alachlor 4x10°
propachlor 4x 10
malathion 4x10%
lindane 2x 103
dieldrin 5% 10?
chlorpyrifos 2x 102
DDT 1 x10?%
1,3-D 4x10*
trifluralin 2 x 10*
heptachlor 8

* Leaching index = [() (/2)1/[(¥,) (K,,)]-

materials relative to known benchmarks and thus
begin to comprehend how the unknown material
might behave environmentally.

The difficulties and disenchantment that set in after
use of the benchmarking process arose from the fact
that interpretation was only relative to other chemicals
and did not address the key issue of what might happen
during actual use of the product. It was not possible to
consider exposure levels to non-target organisms, nor
was it possible to evaluate the interactions of climate
and soil properties with the environmental properties
of a chemical and its pattern of usage. It became quite
frustrating in that better management practices could
not be implemented through the benchmark process,
and actual levels of contamination of the surrounding
environment could not be determined.

4. PROBABILITY MODELLING

After benchmarking, attention within the Dow-
Elanco Environmental Fate Group focused very
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Lab and
Field Studies

Weather Input Soils
Generator Distributions Database
Monte Carlo )=— -~
Output Partial
Distributions Variances

Figure 1. Schematic outline of the probability modelling process.

distinctly upon modelling, and how it might be used to
manage DowkElanco’s products environmentally. It
was recognized that only the process of modelling
would allow the merger of environmental properties
with pattern of use, patterns of climate, and types of
soil. But the modelling had to be of a certain kind. It
had to deal with variability in the inputs used to drive
the models; rainfall, topography, temperature, and soil
properties vary considerably according to where and
how chemicals are used. It was necessary that the
modelling process accepted and propagated the varia-
bility of input, and carried it on into the modelling
output.

The process selected by DowElanco and now under
development is coined ‘probability modelling’ in this
paper. It is a kind of modelling designed to show
statistical trends for environmental activities to take
place, and was developed through the efforts of E. J.
Martin, P. M. Tillotson, and D. D. Fontaine from the
Environmental Fate Group at DowElanco, along with
G. J. McRae at Carnegie-Mellon University. Figure 1
provides a schematic description of the process.

The procedure begins with lab studies to measure

key environmental properties, and field studies to
validate their appropriateness as input into a model
describing the environmental activity of interest. For
purposes of this paper, the likelihood of groundwater
contamination is the point of interest. The model
describing chemical movement through soil is PrRzM, a
chemical transport model developed several years ago
by EPA scientists (Carsel et al. 1984). There is a
weather generator (Richardson & Wright 1982) to
generate rainfall and temperature distribution patterns
specific to distinct areas of the United States, and the
USDA Soil Conservation Service’s soil survey database
for generating the correct soil property distribution
patterns (Oliver & Laskowski 1984). Collectively, these
serve as input to the model ; output is the corresponding
distribution of results as dictated by input distributions
into PRZM.

Sampling components of the process are Monte
Carlo and Fourier Amplitude Sensitivity Test (FasT)

Phil. Trans. R. Soc. Lond. B (1990)

techniques. Monte Carlo is a fairly well-known
technique that has been used by Carsel et al. (1988)
recently to provide a similar distribution of output;
FAST 1Is not as well known, having been developed by
Cukier et al. (1973), and expanded upon more recently
by McRae at Carnegie-Mellon University (McRae
et al. 1982). The purpose of FAST is to supplement the
Monte Carlo sampling techniques. It is used first to
perform sensitivity analysis on the inputs, and then it
selects those inputs having the greatest impact on the
model’s output for further use in Monte Carlo.
Figure 2 shows schematically how the modelling
process works. Monte Carlo or FAsT analysis is used to
develop combinations of input values according to
their natural distributions, which are then used by
PRZM to generate a corresponding output frequency
distribution of maximum depths to which the chemical
in question leached. This output frequency distribution
then serves as the basis for evaluating the likelihood of
a chemical to move deep enough to contaminate
groundwater. The risk of groundwater contamination
from the use of a chemical in a distinct area of the
country, or under a certain management practice, is
defined by the area of overlap with the corresponding

MONTE CARLO OR FAST ANALYSIS

Inputs

VAN

Koc

Outputs

»/\_

Max Leach Depth

1,000
PRZM
RUNS

o Generate input combinations

o Run PRZM on each combination
e Collect output distribution

e Determine input sensitivities

Figure 2. Diagrammatic description of how the probability
modelling process works.
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frequency distribution of depth to groundwater for
that same area, as shown in figure 3.

The reason for using a sampling technique like FasT
instead of relying exclusively on Monte Carlo deals

DISTRIBUTION OF EVENTS + CONTROLLING VARIABLES =
RISK MANAGEMENT

Figure 3. Risk of groundwater contamination as defined by
overlap between maximum leaching depth frequency dis-
tribution and water table frequency distribution.

SOCIETY
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Figure 4. Comparison of Monte Carlo and FAST sampling
techniques utilizing two variables. The line below the bottom
of each X axis represents the distribution of the variables.

with the differences by which the procedures sample
input distributions. Figure 4 provides a comparison of
the two methods, showing their relative strengths and
weaknesses. As shown in the figure, FasT allows the use
of many input parameters, provides greater sampling
of extremes, and yields the best sensitivity coefficients.
But FasT oversamples the extremes and therefore does
not maintain the integrity of input distribution in its
output. Monte Carlo on the other hand, remains
faithful to the distribution of input, and produces
accurate distribution of output. However, Monte Carlo
is computationally intensive and cannot tolerate as
many input parameters, making it more difficult to
develop sensitivity coefficients with this procedure.

Together the two methods work very well in
identifying those parameters most important in influ-
encing the outcome, and then developing the frequency
with which an event of interest is likely to happen.

Figure 5 presents an illustration of what the output
from the probability modelling might look like. This
example is for an agricultural chemical being con-
sidered for use by DowElanco in the midwestern corn
region of the United States. In the figure, the X axis
represents the maximum depth in centimetres at which
the chemical would be detected at a detection limit of
one part per billion. The Y axis shows the frequency
with which the przu leaching model predicted a given
depth, based upon the ranges for the input parameters:
percentage soil organic carbon content, soil adsorption
constant L., total key rainfall (rain falling within 30
days of application), and soil degradation rate as
represented by half-life. FAST was used to select these
four parameters as having the greatest impact on the
chemical’s leaching. (Partial variances in the figure
show their importance.) Monte Carlo was then used
with these four variables to generate the frequency
data shown in the figure. The range used for each
variable is also shown.

This type of modelling has definite appeal because it

220 —,
] 20 parameters
200 —| ]
B %  key parameter range
p— -
180 418 %OC 0.43-4.6
w 160 — ] 20.7 Koc 650-3000
g 11.5 totalkeyrain 8-35cm
] S 140 — | M 84 tlA 20-90 day
< S <l total applied bulk density
>_‘ >-4 & 120 —| runoff curve no’s available water
= S all USLE paremeters
® S 00— s P
25 £ "1 wilting point, max. key storm
Qﬁ e g 80 — | T storm duration (TR), drainage rate (AD)
]
O 84.5 partial variance sum
E O 60 — mean of max depth of detect able residue ~ 13.9cm
[—* 9 9] 40 —
20 —|
0
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Figure 5. Example of probability modelling output. Frequency distribution of maximum leaching depth for a
DowElanco experimental chemical used in the midwest corn market.

Phil. Trans. R. Soc. Lond. B (1990) [ 78 ]


http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

propagates variability of input parameters and utilizes
data readily available from existing databases. The
aspect of variability is of particular interest. Variability
has been and continues to be a big issue with
researchers involved in environmental modelling.
Everyone realizes that nature is full of variation, but
debate continues with regard as to how it should enter
into the modelling process. The unique thing about
probability modelling is the technique’s ability to
consider the whole range of variability for each input
parameter during a modelling exercise. This is of
considerable interest because it could allow the debate
on environmental impact to move from a shaky
foundation of a few field-study results or ‘single-
modelling-run, worst case situations’ to a more
meaningful ‘most probable event’ interpretation. The
procedure could provide a mechanism for evaluating
real risk of contamination to the environment.

One additional feature that is of interest is the
process’s ability to identify those input parameters
having the greatest impact on output. It is the
Environmental Fate Group’s intent to utilize this
information to focus research effort on the issues
deemed most important for assessing the environmental
fate of chemicals.

5. THE FUTURE

Future efforts will focus on refinement of the
probability modelling process, along with assessment of
techniques for disseminating the modelling information
to DowElanco’s customers and government agency
decision makers. The system needs to become more
user friendly; and there must be testing to see if
predicted frequency distributions relate favourably to
actual observed frequency of occurrence. Geographic
information systems will be utilized to transform
information into more readily understood graphic
forms. And expert systems will be examined for their
use as friendly ‘shells’ that allow non-experts to access
data bases created by the modelling.

Finally, the group’s efforts will be aimed at model
improvement. Areas of known weaknesses are the
kinetics of sorption/desorption of chemicals, the
kinetics of soil degradation, the inability to handle
daughter product formation in the models, and
inability to describe vapour transport through and
from soil.

One area of weakness is the issue of sorption—
desorption kinetics. In the environmental arena a
concept of two compartments is emerging with regard
to the behaviour of chemicals in soil. These compart-
ments (available versus unavailable) relate to changes
in availability of a chemical with regard to the
residence time of the material within the soil matrix.
This availability can deal with aspects of controlling
unwanted pests, it may deal with susceptibility to
degradation, or it may relate to the ease with which
chemicals move through soil profiles during leaching
events.

The latter aspect is of considerable interest as much
attention is being turned to the pollution of ground-
waters from agricultural practices. What is emerging

Phil. Trans. R. Soc. Lond. B (1990)
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within the scientific community is somewhat of an
anomaly. On the one hand there is the suggestion that
chemicals can migrate deeper into the soil profile than
first thought, because of preferential flow. This is the
process by which water flows through large pores and
cracks, bypassing much of the soil and thus penetrating
deeper than if the flow were uniform throughout the
entire matrix. Chemicals dissolved in this water are
swept along with the rapid flow without interacting
much with the surrounding soil solids. The result is
deeper penetration than would be predicted from
theory of water movement and soil adsorption partition
coefficients.

On the other hand, there is also evidence to indicate
less than expected penetration of chemicals after a
leaching event. This is thought to occur because of
chemical diffusion deep into the organic coatings on
soil particles and into the aggregate structure soils
naturally possess. This seems to be a normal phenom-
enon. Once chemical is buried within the coatings or
a soil aggregate, it is not as available to leaching, and
can no longer exchange as readily back out into the
free water moving rapidly through the profile. The
result is less than expected movement, and movement
characterized more by a slow bleed of material from
the surface to the soil layers lying below. The field
monitoring data in table 1 dealing with picloram
movement support this concept of slow bleed.

Evidence for and discussion of these concepts have
been presented by a variety of researchers (Davidson &
Chang 1972; Davidson & McDougal 1973; Leistra &
Deckkers 1977 ; McCall & Agin 1985; Rao et al. 1974;
Van Genuchten & Wierenga 1976; Wu & Geschwend
1986). Experimental evidence for change in avail-
ability of one of DowElanco’s agricultural chemicals
was obtained by P. J. McCall (McCall & Agin 1985),
and a portion of the data are summarized in table 4 for
purposes of illustration. The data are from an
experiment aimed at evaluating the influence of
residence time in soil on the rate of desorption of the
chemical picloram from soil back into solution. The
chemical was incubated in moist soil for periods of
0-300 days. Then desorption was performed by adding
water with agitation, and the kinetics of desorption

-were evaluated by monitoring the release of material

into the water. Table 4 summarizes data from a two-
minute equilibration period, and one can readily see
the change in availability of material by the shift in

Table 4. Influence of picloram residence time in Holdredge
loam on desorption kinetics as shown by K, after 2min of
desorption equilibration

(After McCall & Agin 1985)

incubation (days) apparent K,

0 2.9
14 4.4
28 5.3
56 6.5

100 8.4
200 10.3
300 12.9
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apparent partition coefficient with time. This was
considered to reflect the change in picloram associated
with external soil surfaces early in the study to picloram
associated with internal surfaces as time of picloram
contact with the soil progressed.

Another key issue to be addressed by the En-
vironmental Fate Group in the future is soil degra-
dation kinetics. Models do not handle the kinetics of
soil degradation very well, and do not allow the
modification of degradation rates during a modelling
run. Thus there can be no corrections to degradation
rate because of changing climatic conditions such as
soil moisture and soil temperature. These are known to
have real impact on degradation kinetics, and models
must do a better job of describing their interactions.
There have been successful modelling exercises that
couple soil moisture and temperature to degradation
rate; the most notable are the series of elegant studies
conducted by Walker (1978). Sensitivity analysis with
FAST has shown the importance of degradation rate on
transport of chemical through soil, and the Environ-
mental Fate Group will focus its attention on im-
proving models in this general area.
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Discussion

D. J. GREENwoOD (AFRC, Institute of Horticultural Re-
search, Wellesbourne, U.K.). Often the inputs into your
models must be highly correlated with each other,
especially in the case of soil characteristics. For
instance, the soil organic matter content must be
strongly negatively correlated with adsorption con-
stant. How do you cope with such correlations?

D. A. Laskowsk1. Correlations among input variables
are easily accounted for in the Monte Carlo module of
our computerized ‘probability modelling’ system. The
Monte Carlo module consists of a program developed
by Iman & Shortencarier (1984) that utilizes a Latin
hypercube sampling technique. This program allows
users to specify a correlation matrix for input variables
in the Monte Carlo analysis. For one particular system,
this correlation matrix would include correlations
among soil and pesticide properties.

It should be noted that correlations among input
variables are not always well defined and are often
unknown. The real problem is to define what these
correlation matrices should be. In our system, cor-
relations among soil properties are estimated from the
USDA Soil Conservation Service’s soil survey database
(Oliver & Laskowski 1984). However, our limited
experience with correlations in this database suggests
that it may provide physically unreasonable correlation
values in some cases.
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J. H. Otraway (Department of Environmental Science,
Unwversity of Bradford, U.K.). The technical attraction of
the modelling system described by Dr Laskowski is
very great, but, as he himself has said, the biological/
biochemical component is rather weak, leading to poor
results with metabolites. This concentration on
physico-chemistry, with respect to biology, is very
noticeable if one compares this model with those
currently being used for risk assessment of carcinogens
(see for instance the Banbury Report 31 (1988)).
However, is it possible that the attractiveness of the
quantitative outputs provided by the Dow model may
lead to its results being incorporated as they now stand,

[ 80 ]


http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

quasi-permanently, into the recommendations of regu-
latory agencies? That is, will once again ‘the medium
be the message’?

D. A. Laskowskr. As Dr Ottaway describes in his
question, we presented a system of modelling, which is
not really restricted to a specific model. In other words,
our focus was on the concept of probability modelling,
and how it might be used as a tool for making
environmental decisions. The model itself is an integral
part of the process, since it provides the actual estimates
of environmental concentrations for the exposure side
of the exposure/toxicity components of environmental
impact.

Models do indeed have strengths and weaknesses, as
pointed out by Dr Ottaway, and this is recognized by
those who work with them. However, models are tested
frequently, represent the current state of knowledge,
and therefore are legitimate to that extent. Models are
constantly being improved with advancement in
knowledge.

It is our perception that regulatory agencies are
aware of model limitations and do treat modelling
information with caution. They also recognize that
processes like probability modelling provide the first
real opportunity for agency reviewers to integrate
massive amounts of data received as isolated pieces of
information into a coherent picture aimed specifically
at addressing impact to the surrounding environment.
Even though the process may not be without flaw, it
certainly is a step ahead for environmental chemistry,
and, as in any scientific arena, will continue to be
developed and improved as more is learned.

R. WEBSTER (Centre de Géostatistique, Fcole Nationale
Supérieure des Mines de Paris, Fontainbleu, France). 1 am
pleased that Dr Laskowski and his colleagues are
attempting to compute probability distributions of the
depths to which agricultural chemicals move in the
soil. The distributions from their model depend on the
distributions of soil properties among others that enter
the model. And so, if they are to represent the
underlying distributions faithfully then the input
distributions must be derived from a probabilistic
sampling of the soil. Otherwise they will almost
certainly be more or less biased. So, I should be
grateful if Dr Laskowski would say precisely how the
soil was sampled over such large regions to provide the
data for modelling.

D. A. Laskowskl. The U.S.A. has a steadily improv-
ing, comprehensive soil inventory database through
cooperative soil survey efforts by USDA Soil Con-
servation Service, State Extension Services, and local
governments. The current geal, outlined by Congress,
is to completely map and inventory all agricultural
lands by the end of 1990. We estimate that more than
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909, of the corn belt acreage was included in the

database at the time of our study.

Soil survey methods are similar throughout the
world, and are dependent upon map scale. At the scale
of mapping for primarily agricultural uses
(ca. 1:200000) an experienced soil scientist will probe
relatively few, but well chosen, positions on the
landscape to develop the soils map. The mapper uses
knowledge of soil formation processes, past experience
with soils in the area, and airphoto interpretation skills
in developing the map. Map unit composition (ex-
pressed as a percentage of soil taxa expected within a
map unit) is determined by more intense sampling of
random transects located within randomly selected
map polygons. This information is summarized for
each map unit by acreage in each soil survey area. The
national soils database (SOI-6 portion) contains this
information, along with reference to acreage of each
taxonomic unit within a soil survey area.

Each taxonomic unit (generally classified at the soil
series taxonomic level) has an entry in the national soils
database (SOI-5 portion) for interpretation of po-
tential soil uses. Ranges of soil properties, some of
which are pertinent physicochemical soil characteristics
for pesticide transport models, are listed. The range in
value for a soil characteristic within a taxon reflects
field-observed /laboratory-measured values. Soils are
classified by a combination of soil properties; soils
observed in the field that fall outside the allowable
ranges for an important property (i.e. percentage of
clay) necessarily are classified to be within a different
soil series.

We view the soils information available to us to be a
complete inventory of the population of soils within the
region at the commonly used map scale. Model input
distributions of soil properties are based upon ranges
listed for each soil taxon and known distributions for
soil properties from the body of soil science research.
We agree that for a less well-characterized population
elaborate sampling schemes would be necessary. For
regional analysis, however, the existing database allows
us to enter data on the ‘true’ distributions of soil
properties to the models without need of probabilistic
sampling. The probability of occurrence of a particular
soil property value, as seen by the models, is that of the
acreage distribution for soils with that property within
the region.

S. P. S. ANpREw (The Wynd, Stainton, Maiddlesbrough,
U.K.). In estimating leaching the solubility has been
described as that in pure water. Natural waters,
particularly surface water, often contain considerable
quantities of plant and microbial decomposition
products — humic substances etc. To what extent do
these act as solubilizing agents for pesticides which
would in pure water have a very low solubility.
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